Corrosion of Ceramics

Corrosion of Ceramics

It is often said that one of the biggest advantages which ceramics have over other materials is their corrosion resistance, that is, their chemical inertness in corrosive environments. Is this always true? Corrosion is generally understood as property degradation due to environmental attack. As it will be shown in this section, there are a number of environments in which ceramics can degrade at a rapid rate. There exists a tremendous need for reliable and corrosion resistant structural ceramic or partly ceramic materials which can be used in aggressive environments such as: - high energy battery systems (such as sodium-sulphur): beta-alumina is being investigated - gas turbines: silicon nitride and/or carbide are being investigated - heat exchangers: SiC, composites are being investigated Ceramics are indeed much more environmentally…
Crack Initiation and Propagation

Crack Initiation and Propagation

Stages is fatigue failure: I. crack initiation at high stress points (stress raisers) II. propagation (incremental in each cycle) III. final failure by fracture Stage I - propagation •   slow •   along crystallographic planes of high shear stress •   flat and featureless fatigue surface Stage II - propagation Crack…
FATIGUE

FATIGUE

Fatigue is the catastrophic failure due to dynamic (fluctuating) stresses. It can happen in bridges, airplanes, machine components, etc. The characteristics are: • long period of cyclic strain •   the most usual (90%) of metallic failures (happens also in ceramics and polymers) •   is brittle-like even in ductile metals, with little plastic deformation •   it occurs in stages involving the initiation andpropagation of cracks.…
FRACTURE

FRACTURE

Fundamentals of Fracture Fracture is a form of failure where the material separates in pieces due to stress, at temperatures below the melting point. The fracture is termed ductile or brittle depending on whether the elongation is large or small. Steps in fracture (response to stress): • Crack formation • Crack propagation Ductile Fracture Stages of ductile fracture - Initial…
Nano – Materials

Nano – Materials

Nanostructured materials are those materials whose structural elements—clusters, crystallites or molecules have dimensions in the range of 1-100 nm. These small groups of atoms, in general, go by different names such as nanoparticles, nanocrystals, quantum dots and quantum boxes. Substantial work is being carried out in the domain of nanostructured materials and nanotubes during the past decade since they were found to have potential for high technology engineering applications. One finds a remarkable variations in fundamental electrical, optical and magnetic properties  that  occur as  one progresses  from  an  ‘infinitely extended’ solid  to  a particle of material  consisting  of  a  countable  number  of  atoms.  The  various  types  of  nanostructured materials which has been considered for applications in opto-electronic devices and quantum- optic devices are nano-sized powders of silicon, silicon-nitride (SiN), silicon-carbide (SiC) and their thin films. Some of these are also used as advanced ceramics with controlled micro…
Smart materials

Smart materials

Smart materials are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, pH, electric or magnetic fields. Group of new and state-of-the-art materials now being developed, and expected to have significant influence on present-day technologies, especially in the fields of medicine, manufacturing and defense. Smart/Intelligent material system consists some type of sensor (detects an input) and an actuator (performs responsive and adaptive function). Actuators may be called upon to change shape, position, natural frequency, mechanical characteristics in response to changes in temperature, electric/magnetic fields, moisture, pH, etc. Four types of materials used as actuators: Shape memory alloys, Piezo-electric ceramics, Magnetostrictive materials, Electro-/Magneto-rheological fluids. Materials / Devices used  as sensors: Optical fibers, Piezo-electric materials, Micro-electro-mechanical systems (MEMS), etc. Typical applications: By incorporating sensors, actuators and chip processors into system, researchers are able to stimulate biological human-like behavior; Fibers for bridges, buildings, and wood utility…
COMPOSITES

COMPOSITES

Particle-reinforced composites These are the cheapest and most widely used. They fall in two categories depending onthe size of the particles: •     large-particle composites, which act by restraining the movement of the matrix, if well bonded. •     dispersion-strengthened composites, containing 10-100 nm particles, similar to what was discussed  under  precipitation  hardening.  The  matrix  bears  the  major  portion  of  the applied load and the small particles hinder dislocation motion, limiting plastic deformation. Large-Particle Composites…
Processing of Plastics

Processing of Plastics

Injection moulding (United States Injection Molding) is a manufacturing technique for making parts from thermoplastic material. Molten plastic is injected at high pressure into a mold, which is the inverse of the desired shape. The mold is made by a moldmaker (or toolmaker) from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is very widely used for manufacturing a variety of parts, from the smallest component to entire body panels of cars. It is the most common method of production, with some commonly made items including bottle caps and outdoor furniture. The most commonly used  thermoplastic materials  are  polystyrene (low-cost,  lacking the  strength  and longevity of other materials), ABS or acrylonitrile butadiene styrene (a co-polymer or mixture of compounds used for everything from Lego parts to electronics housings), nylon (chemically resistant, heat-resistant, tough and flexible - used for combs), polypropylene (tough and flexible - used for containers), polyethylene, and polyvinyl chloride or PVC (more common in extrusions as used for pipes, window frames, or as the insulation on wiring where it is rendered flexible by the inclusion of a high proportion of plasticiser). Compression  molding  is  a  method  of  molding  in  which  the  molding  material,  generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, and heat and pressure are maintained until the molding material has cured. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses,…
Factors that Influence the Mechanical Properties of Polymers

Factors that Influence the Mechanical Properties of Polymers

The tensile modulus decreases with increasing temperature or diminishing strain rate. Obstacles to the steps mentioned in strengthen the polymer. Examples are cross-linking (aligned chains have more van der Waals inter-chain bonds) and a large mass (longer molecules have more inter- chain bonds). Crystallinity increases strength as the secondary bonding is enhanced when the molecular chains are closely packed and parallel. Predeformation by drawing, analogous to strain hardening  in  metals,  increases  strength  by  orienting  the  molecular  chains.  For  undrawn polymers, heating increases the tensile modulus and yield strength, and reduces the ductility - opposite of what happens in metals. Crystallization, Melting, and Glass Transition Phenomena Crystallization rates are governed by the same type of S-curves we saw in the case of metals Nucleation becomes slower at higher temperatures. The melting…
Deformation of Polymers

Deformation of Polymers

Many semicrystalline polymers have the spherulitic structure and deform in the following steps : •    elongation of amorphous tie chains                            •    tilting of lamellar chain folds towards the tensile direction •    separation of crystalline block segments •    orientation of segments and tie chains in the tensile direction The macroscopic deformation involves an upper and lower yield point and necking. Unlike the case of metals, the neck gets stronger since the deformation aligns the chains so increasing the tensile stress leads to the growth of the neck.