Perspectives of the On-line Engineering Office

Internet   environment   and   internet   based   tools   enable   numerous   opportunities   of establishing new enterprises even without any actual, physical office. Such enterprises are already functioning in many services, e.g. language, banking, trading, to full extent. This is also true in various engineering activities. Such an environment is also beneficial in case of multinational   companies,   since   it   enables   new,   powerful   means   of   communication throughout the world as a part of their distributed collaboration environment, as well as in small firms where the primary benefit lies in possibilities of the joint virtual collaboration.On  the  other  hand,  emerging  design  and  production  systems  are  characterised  by  their atomisation. This is true for huge international enterprises, establishing their branch offices and  production  units  in  expenses  and  resources  optimized  manner.  And  it  is  also  true  in case   of   specialised   small   and   micro   enterprises.   Namely,   due   to   high   tech   product complexity,  the  latter  can  be  competitive  mostly  in  combined  efforts.  Such  companies operate in a distributed production and design environment. It should be also stated that the role of the innovative design in economic growth of companies is crucial. Therefore, a distributed development environment must introduce a new working paradigm, adapted to permanent design innovation and sustainable product development. The  proposed  chapter  deals with  the  On-line  engineering  office  (OLEO) concept. Its  basis and  structures  will  be  discussed  in  detail,  and  several  possible  scenarios  and  advantages will be presented to illustrate the proposed concept. It is our belief that such a concept can importantly  support  not  only  SMEs  but  micro  companies  as  well.  Particularly  in  small economies   it   can   be   difficult   to   maintain   and   develop   prosperous   small   specialised engineering business, thus it is necessary to spread such an enterprise over the borders. And the proposed concept seems to be a feasible solution.

Contemporary  information  and  communication  technologies  (ICT)  enable  different  means and methods  for  e-collaboration.  The  key  requirements  for  implementation  of  the  design and   development   collaboration   framework   are   functional   and   resource   integration; synchronous  and  asynchronous  communication;  data,  file  and document  management; project management; and common cooperation space in a distributed environment. Besides, the ICT platform has to assure a high level of privacy, safety, and reliability, which all are essential building blocks of the OLEO. It relies on service oriented architecture and virtual portal technology and on virtual coordination unit in organisational sense. The  crucial  advantage  of  the  proposed  concept  is  that  it  is  lean.  Lean  companies  are  well known  organisational  issue.  Large  companies  tend  to  “leanify”  their  production.  And  let diverse  costly  tasks  outsource.  In  this  context  the  particular  OLEO  consists  of  its  basic competence,   e.g.   space   trusses   design,   special   gearing   design,   PLC   planning   and deployment, automatic production line design, etc. Necessary regulatory and financial tasks are  outsourced.  Despite  its  specialisation,  such  a  business  needs  particular  knowledge  or routine  at  its  boundaries.  Or  a  design  project  appears  to  exceed  human  resources.  It  is efficient  to  find  other  specialists,  provided  a  common  platform  can  be  established.  No employment  is  needed,  no  additional  administration,  just  necessary  human  force  for  the limited time period. Of course, such cooperation is based on particular competences of the involved  partners.  This  can  include  human  specialisation,  software  tools  and  machine operation.The OLEO is therefore characterised as a web based on-line accessible engineering facility with sufficient competence and abilities in at least one main engineering development and design area and ability to form or adjoin another corresponding facilities based on their and collected  competence.  Functionalities  then depend  on  design  and  development  tasks  that the OLEO is competent in. The proposed formation uses  an adaptable ad/hoc networked development  environment  collecting  human  expertise,  engineering  tools,  web  tools  and methods, data and knowledge bases, and communication and collaboration tools.

Mechatronic product development

Mechatronic  product  development  is  centred  on  discipline-specific  specialisation  of  sub- processes, methods and tools, and the apparent need for cross-disciplinary harmonisation. The later is a prerequisite for reliable project assessment and control. It is also a foundation for efficient cooperation of individual specialists, teams and disciplines. It is a challenging task  within  a  cross-enterprise  or  individual  OLEOs  cooperation  leading  to  efficient  task solution. Problem  discussed  in  this  chapter  relates  mechatronic  product  or  system  design  and development  in  small  and  medium  size  enterprises  (SME),  which  have  only  limited resources to  develop  such  products.  However,  their  market  position  and  competitiveness strongly depend on new innovative, creative goods, which basically consist of a mechanical structure, electronic and micro-processing devices, as well as programs or even intelligent software for the implementation of the operations control. This means that the complexity of the  mechatronic  product  development,  design  and  manufacturing  requires  a  number  of highly competent and knowledgeable subjects in different fields. It also implies usage of the newest  methods,  tools,  and  variety  of  data  and  knowledge  bases.  At  last,  results  of fundamental  and  applied  research are  indispensable  in  development  of  new  artefacts. On the other hand, SMEs are performing excellently in their specialised domain. To become and remain  in  such  state  they  should  continuously  optimise  their  development  and  work systems to their production. Problems are lack of knowledge, experience and man-power in other fields, e.g. development of promising new products or systems, technologies, factory automation, etc. Thus, questions raised here from the SMEs viewpoint are

1.     about definition of a new product itself and its production technology and

2.     search for competent developers and developing tools.

Yet  another  aspect  in  engineering  design  is  that  designers  are  dealing  with  uncertainty starting from inexact specifications and only the degree of their competence makes possible convergence   towards   an   improvement   or   new   product.   It   is   necessary   to   gain   new information, to decide upon and build a model and possibly incorporate this in a particular  design.

This could be regarded as innovation process. Only LMC have sufficient resources enabling continuous innovation. In order to explore mechatronic product development, several aspects should be discussed. First of all the vital resources of the development process, represented in Fig. 1, should be debated.  As  one  can  see  in  the  figure,  the  first  are  people  with  their  particular  skills  and knowledge, who are trained for special tasks and who might be certified to do some (design) tasks and not less important, they should be properly motivated. Then, there are particular tools and equipment, mostly computer software and hardware, enabling such tasks. And at last,  each  design  process  is  project  based  and  self  contained  are  procedures  and  methods defining   interrelationships   between   tasks   necessary   for   the   project   to   converge   to   a mechatronic product.

Another  aspect  is  the  design  and  development  process,  gradually  proceeding  in  iterative manner from initial requirements to a mature product, as illustrated in Fig. 2. Design cannot rely  only  on  creativeness  and  innovativeness.  Due  to  complexity  of  intended  artefacts, mechanical  design  systematic  has  been  developed  and  put  into  practice  especially  in Germany in the second half of the last century, which is thoroughly founded in work of Pahl and Beitz from 1980 and gradually improved up to day (Pahl and Beitz, 2007). Since then, other, more abstract approach, aiming to mathematically formulate and analyse mappings from the customer needs, through the functional structure up to the design and the process domain following axiomatic rules was developed by Suh in 90-ties (Suh, 2001). Yet another approach,  gaining  importance,  is  TRIZ  –  Theory  of  inventive  problem  solving.  TRIZ  was developed  mainly using  knowledge  acquired  from  engineering  patents  awarded  in  all engineering domains and is based on the concept that every superior invention is the result of resolving a contradiction and that technical systems follow generic tendencies throughout their   existence,   which   have   been   named   as   the   laws   of   technical   system   evolution (Altshuller, 1984). TRIZ aims to problem solving in computer aided innovation (Leon, 2009 and Verhaegen et al., 2009). However,  a  new  paradigm  was  necessary  for  mechatronic  system  design.  Mechatronic systems  could  be  defined  as  a  composition  of  sensors  and  actors  in  a  mechanical  core, whereas informational structure makes possible its process(es). At first, mechatronic system development was organised in separated mechanical, electronic, control and informational domains.  The  first  guideline  in  mechatronics  was  VDI-2422  (VDI,  1994)  intended  for contemporary  microcontroller  based  systems,  where  mechanical  structure,  circuit  layout and   software   were   developed   separately,   with   no   interdisciplinary   linkage   during embodiment design phase. This was overcome by a domain integration approach defined in VDI-2206 (VDI, 2004), which declares a V-model of systems engineering as a development approach  in  a  multi-disciplinary  development  environment  with  inter  and  cross-domain interaction and concurrent approach. This trend towards more complex products also puts impact on more sophisticated management of product development processes. Resolution of conflicts and interferences among them became critical in such environment.

Yet  another  important  viewpoint  is  a  product  from  its  life  cycle  perspective.  The  recent advances  of  information  technology  radically  changed  the  way  product  development  is done.  First  breakthrough  was  achieved  by  CAD  tools,  especially  by  3D  modellers,  which made possible effective geometric and product data generation and exchange. There would not  have  been  any  modern  product  development  without  various  technical  information systems like CAE, PDM and CAM, ERP and PLM which facilitate to a high extent data flow of  complex  digital  artefacts  in  distributed  environments.  Fig.  3,  adapted  from  (Nieman, Tichkiewitch and Westkämper, 2009), illustrates the complexity of modern product model domain complexity, due to the product life cycle perspective. Such a model is not only about a  core  product  and  its  characteristics,  materials,  accessories,  but  as  well  about  financial aspects, after sales maintenance, product service systems and recycling and safe disposal.

As  already  stated,  a  mechatronic  system  design  requires  methods,  tools  and  expertise  in several  engineering  fields,  namely  mechanical,  control,  electronics  engineering  as  well  as various  level  programming.  Since  project  based  organisation  of  such  development  is evident,  collective  competence  should  be  defined,  composed  of  all  individual  knowledge and experience, necessary for successful implementation of a design task. Variety of tools, methods and “over-informed” staff make recognition of good design choices more difficult and again competence is of vital importance. Therefore, a new design and development paradigm, suitable for growing market demands and  coping  increasing  product  and  system  complexity,  should  be  established.  Such  an innovative  design  and  development  (D&D)  structure  has  been  proposed  by  Peklenik  and reported  upon  in  detail  in  (Peklenik,  2004,  2006)  and  is  resumed  here  briefly.  The  D&D process   thus   starts   from   a   product   specification   proceeds   through   the   innovative development and design, prototype and manufacturing technology elaboration to a working prototype.  Both  processes,  namely  design  and  prototyping  are  conducted  by  specialised engineering teams. Since collected engineering knowledge might be insufficient, additional training should be available. In order to access additional less focused, broader knowledge on  design  and   technology  applied   and  manufacturing   research   teams   are  employed. Efficient cooperation of all teams and individuals collaborating in product formation is of crucial  importance.  In  this  context  a  virtual  coordination  unit  (VCU)  was  developed (Peklenik, 2004), Fig. 4.

The  basic  tasks  of  the  VCU  are  a)  organisation  and  management  of  the  data  stored  in various  data  and  knowledge  bases,  on  different  locations;  b)  maintenance  of  effective communication,  coordination  and  control  of  the  activities  performed  by  the  subjects  of various   teams   and   the   teams  as   a   whole;   c)   communication   with   the   innovation management,  reporting  on  every  significant  aspect  in  the  development  and  design  of  the HT-product; various aspects of patent management; d) organisation of additional training courses on-line for the subjects working in development and design prototyping teams; e) survey of the research activities of various research teams at universities, research institutes, companies:  manufacturing  capacities  of  the  SME  participating  in  the  production  of  HT- products: etc. The term team can as well apply to the OLEO. The VCU-function of coordination and control includes a fast and reliable communication with the manager, various teams and team subjects, the researchers of the in- and outside the  R-units,  the  training  bodies,  patent  office  etc.  The  IT  with  the  Internet  and  LAN- structures are the most capable means for realization of the virtual coordination function. Whereas the coordination of processes is performed by the virtual coordination unit (VCU), a virtual competence centre (VCC) has been introduced for communication, teamwork and cooperation support (Sluga et al., 2005). It provides communication among team members, teams and VCU. The communication is carried out over the VCC portal. The portal enables access  to  data  and  knowledge  bases,  applications  and  web  services  that  are  intended  for common  usage.  The  portal  also  provides  a  common  electronic  workspace  in  order  to support communication and asynchronous cooperation. Contemporary  information  and  communication  technologies  (ICT)  enable  different  means and  methods  for  e-collaboration.  The  key  requirements  for  implementation  of  the  D&D collaboration   framework   are   functional   and   resource   integration;   synchronous   and asynchronous communication; data, file and document management; project management; and  common  cooperation  space  in  a  distributed  environment.  Besides,  the  ICT  platform should assure a high level of privacy, safety, and reliability.

On-line engineering office

As market circumstances – i.e. growing product complexity and functionality, less predictable market, demands on higher quality, etc. – influence production companies, this reflects design and  development  as  well.  So  as  companies  develop  organizational  forms  enabling  prompt adaptation  and  much  higher  flexibility,  similar  transformation  is  necessary  in  design  and development domain. Goals of such an adaptation should be faster response, flexibility, ability to  collaborate  in  a  distributed  environment,  mastering  increased  complexity,  cross-domain collaboration,   mastering   information   flow,   improving   mutual   communication   to   avoid misunderstandings. D&D tasks in such environment are becoming more complex and more diverging in general; time spans to accomplish such tasks are narrowing.

This also essentially influences organizational structure. In the chapter proposed formation uses an adaptable ad/hoc networked development environment collecting:

–       human expertise,

–       engineering tools,

–       web tools and methods,

–       data and knowledge bases, and

–       communication and collaboration tools.

E.g. human expertise is valuable, however, it is very often hidden, it is difficult to discover information  even  if  someone  would  have  paid  for  it  and  previously  stated  environment makes it available. Thus, such an environment, collecting tools and human knowledge and coordination through internet enables better design and development possibilities also for SME. Fig. 4 reveals the structure of the proposed on-line engineering office (OLEO) first proposed during  work  for  European  Framework  Programme  6  project  “Virtual  Research  Lab  for  a Knowledge Community in Production) VRL KCiP”, (Peklenik et al., 2008). The general idea of  the  VRL  KCiP  is  to  collect  human  skills,  tools  and  equipment  in  a  virtual  manner  and evolved to Emiracle (Emiracle, 2010). The OLEO environment backbone is a VCC portal assuring access to its particular elements Hlebanja  et  al.,  2008,  Hlebanja,  2009).  Experts,  competent  professionals,  use  engineering tools on everyday basis. They also use data bases needed in design process, e.g. parts and assemblies,  collected  by  TraceParts  (TraceParts,  2010).  Communication  and  collaboration tools  in  OLEO  are  of  crucial  importance.  Rules  regarding  special  design  features  (die casting, moulding, etc.) could be to some extent part of engineering tools (integrated in CAD systems), however many special methods and knowledge are systemized in additional tools, services  or  knowledge  bases.  Supplementary,  even  competing  or  complementary  tools, services and methods are accessible through internet, as well work systems implementing prototypes and even labs, when experimental research is needed. Production SMEs are usually in the position of customers; they require information, service or  finished  design.  In  this  context  the  OLEO  could  be  regarded  as  a  special  type  ADMS (adaptive distributed manufacturing system) (Sluga et al., 2005), where design assumes the role of a product.

An accomplished project could even result in mutual efforts of several OLEOs, which could be  in  a  long  term  cooperation  or  in  an  ad-hoc  connection,  some  tasks  could  be  even outsourced. The ability of an ad-hoc grouping in a case of necessity is advantageous. There are  almost   unlimited   scenario   combinations.   However,   this   is   true   only,   if   collected knowledge  and  experience  (i.e.  competence)  and  design  process  coordination  lead  to  the objective to be accomplished. The OLEO is therefore characterized as a web based on-line accessible engineering facility with sufficient competence and abilities in at least one main engineering development and design area and ability to form or adjoin another corresponding facilities based on their and collected  competence.  Functionalities  then  depend  on  design  and  development  tasks  that the OLEO is competent in. Fig. 5 reflects its structure.

Tools

High-tech  or  mechatronic  systems  –  innovative  products  in  general  –  development  and design  require   interdisciplinary   combination   of   mechanical,   electronic,   control   and information  engineering  development  in  a  concurrent  manner,  so  called  cross-domain engineering to build the underlying mechanical and electrical structure, and its control and programming  environment  to  accomplish  the  system  integration.  Traditional  engineering sequences could not result in an optimal solution

Innovation lies prevailingly in early design phases, regardless of the design methodology in use,  structured  (Pahl&Beitz,  2007,  VDI,  2004)  or  axiomatic  design  (Suh,  2001),  which  are basically not fundamentally different (Meijer, 2006). It appears that VDI  systematics (VDI,2004) helps to position tools and methods used in product development in a particular spot. Several interacting sub-models should be developed during HT product design already in the principal solution phase:

a.     demands,

b.     environment

c.    target system,

d.    working structure,

e.     shape,

f.     functions,

g.     scenarios,

h.     working    characteristics    (e.g.    dynamic    response,    digital    logic,    etc.)    (Krause& Gausemeier, 2007).

Table 1 contains characteristic examples of tools used in the OLEO.

Communication, collaboration and coordination

Communication, collaboration and coordination are essential in an efficient OLEO:

1.     communication between engineering office and customer, i.e. SME,

2.     collaboration among developers, regardless it is intra- or inter-offices or customers,

3.     coordination of development and design project. Means of communication could be categorized in

–       asynchronous tools (e.g. mailers, task organizers, file exchange, etc.),

–       videoconferencing, web dialogs (e.g. Unyte),

–       model visualization tools,

–       tools enabling collaborative functional use of a CAD system,

–       project oriented collaboration using PDM systems, and

–       VCC as access point communication tool.

Collaborative  engineering  is  facing  several  problems,  namely:  lack  of  collaboration  tools integration,  incompatibility  of  tools,  ad-hoc  collaboration,  failing  standards,  data  security, etc. Despite that, the collaborative environment is a field with a steep increase rate due to its growing  importance.  If  someone  puts  search  for  “virtual  collaboration”  in  Google  the response is plentiful. There are free or payable solutions, project management solutions, etc. Communardo   (Communardo,   2010)   is   a   company   providing   appropriate   innovative solutions in this field for many years. The VCU in an OLEO gains additional role. The problem is as already said, collaboration. Design  tasks  are  project  based  and  the  VCU  should  coordinate  such  project  in  two  cases, depending on project ownership.

In the first scenario our OLEO is the project owner and the VCU coordinates:

a.     the project as such,

b.     all tasks delivered to the owner and

c.     all tasks delivered to other entities,

which  might  be  SMEs,  another  OLEO  or  manufacturing  facilities  –  autonomous  work

systems (Sluga et al., 2005). The opposite scenario is that our OLEO is a contractor of some company, which might also be an OLEO or SME or even LSE. The project owner is the other party in this case, so our OLEO is subordinated.  The problem faced here is that each partner

runs  his  own  processes.  And  at  this  point  there  are  two  possibilities  the  data  or  process integration.   Regarding   the   first,   the   coordination   is   about   how   to   coordinate   data transmission and transformation in such a way that the partner could accurately interpret the data and vice versa. The process oriented collaboration of a particular task is illustrated in Fig. 6. Depending on whether our OLEO is the owner or the subordinated party, it is in the  left  or  right  side  in  the  figure.  Such,  task  (process)  based  collaboration  emerges  in numerous  scenarios,  and  especially  in  engineering  change  management  (ECM)  processes, which   are   of   particular   importance   due   to   design   process   complexity   and   iterative procedure. The latter led to VDA recommendation, (VDA, 2010).

When  there  is  a  customer/supplier  relationship  between  two  partners,  there  are  typically dependencies  between  the  private  ECM  processes  of  the  individual  partners.  At  different times in the engineering change management process, one of the partners proposes a change or  one  partner  must  be  integrated  in  the  other  partner’s  own  process  in  order  to  permit activities  such  as  technical  elaboration,  evaluation  or  decision-making.  This  is  generally achieved by sending suitable messages to the partner (VDA, 2010), as illustrated in Fig. 6. However,  the  collaborative  environment  could  gain  quite  complex  forms.  And  the  VCU acquires  a  new  role  –  that  is  coordination  of  such  processes  subordinated  to  a  particular project.

Web services are founded on the Service-Oriented Architecture (SOA). This concept is based on  an  architectural  style  that  defines  an  interaction  model  between  three  primary  parties: the service provider, who publishes a service description and provides the implementation for  the  service,  a  service  consumer  (receiver),  who  can  either  use  the  uniform  resource identifier (URI) for the service description directly or can find the service description in a service  registry  and  bind  and  invoke  the  service,  Fig.  7.  The  service  broker  provides  and maintains  the  service  registry  (Arsanjani,  2004).  The  registry  in  a  web  community  is  in principle public. However, it should be kept in a domain of the OLEO in this case.

Design scenario

A  design  scenario  is  employed  as  an  illustration  of  the  OLEO  concept,  in  this  case  an automated  testing  rig  for  observation  of  slow  speed  rolling  sliding  contacts, developed  at the Faculty of Mechanical Engineering in Ljubljana (Hlebanja&Peklenik, 2003). Many heavy duty machines, final stages of power transmissions, etc. incorporate such contacts, which are particular in their properties, possible damage forms, etc. Experimental work contributes to the development of a useful contact model of such processes, thus improving design of such contacts. Normally  the  D&D  process  would  have  been  started  with  the  market  research,  affirming state  of  the  art,  market  needs  and  perspectives,  continues  with  specification,  in  depth iterative (system) development, and a working prototype development (system integration) (Peklenik, 2004, 2006), which also includes product testing, its acceptance and certification (if feasible). Manufacturing technology, assembly and quality control considerations would be also required in case of anticipated serial production (Iserman, 2008).

In  this  particular  case  an  equivalent  to  the  mechatronic  product  specification  process (Peklenik, 2004) was necessary. The scientific research on feasibility and industrial relevance of such experimentation and its results had to be conducted in the first place. Upon acquired information some decisions could be derived. The consequent pre-project phase aims

a.    to define a task specification, and

b.     to form a D&D team in which a mechanical designer, electronic engineer and a scientist contribute.

The situation analysis should answer questions regarding experimental conditions. In this early development stage, several aspects, influences and preliminary sub-models should be worked out. These include environmental conditions and influences, experimental strategies (scenarios)  elaboration,  definition  of  functional  structure  and  functional  units,  working structure elaboration, and preliminary shaping (Gausemeier, 2005).

The above analysis implied testing rig boundary conditions, that is

–       cylindrical convex-convex rolling-sliding contact,

–       speed range according to Stribeck’s curve between 0,035 and 0,2 m/s,

–       Hertzian pressure up to 1400 N/mm2,

–       experiment duration up to 500 hours (fatigue cycles),

–       sliding circumstances, etc.

Consequently,  the  machine  size  can  be  defined,  i.e.  normal  force  up  to  10000  N.  Several aspects  were  considered  afterwards,  e.g.  long  term  experiment  stability,  assurance  of automatic and punctual stop in case of damage (scuffing), etc. The result in this phase was redefinition   of   demands,   confirmation   of   a   functional   model,   experimental   scenarios elaboration, etc. Based on above, a so called “semi-operational” scheme was developed, Fig. 8. Based on the pre-project information review and evaluation of expenses it was decided to proceed with the project. The  mechanical  structure  was  produced  and  assembled  in  an  external  facility  and  the machine integration, revival and testing took part prior to final delivery. The testing rig made possible slow speed rolling-sliding contact experiments, thus enabling research on cold scuffing, wear and pitting phenomena. The testing rig was developed using computer tools. Experiments have been controlled and monitored  by  a  computer.  However,  the  development  environment  was  not  integrated  to the extent prevailing today, communication being physical, by phone or by e-mail and file based.

How could an OLEO benefit to the above or any project?

–     First  of  all  there  is  the  necessity  for  the  integrated  development  environment,  which enables better coordination, on-line accessible data, easier communication, etc.;

–       the role of the VCU is expanded over  the initial tasks defined by (Peklenik, 2004);

–     using video-conferencing and visualisation tools for brainstorming, clarifying technical details;

–     employing  new  collaboration  tools,  e.g.  EVO  (EVO,  2010),  which  enable  audible  and visual communication as well as sketching tools, or Unyte (Unyte, 2010), which makes public the entire desktop;

–       less or no transportation time and expenses, and this way ecologically suitable;

–       better prepared meetings;

–     particular  specialists enter  D&D  process  only and  if necessary  for  the  time  needed  to accomplish their task, which is the characteristic of a lean organisation;

–       efficient project management;

Conclusion

The  need  to  restructure  basic  characteristics  of  emerging  design  and  production  systems was exposed in the chapter. The concept of the adaptable and competent network structures for D&D process innovation has been summarized and the role of the virtual coordination unit  explained.  Furthermore,  an  on-line  engineering  office  (OLEO)  structure  has  been proposed  in  order  to  facilitate  distributed  development  of  innovative  high  tech  products and    mechatronic    systems.    The    OLEO   could    be    feasible   structure    for    individual entrepreneurs as well as for SMEs. The structure of OLEO has been explored with regard to necessary human expertise, engineering tools, web tools and methods, data and knowledge bases, and communication and collaboration tools. Through the illustrative D&D scenario, the importance of web based integration was pointed out.However, at present time this task appears to be of extreme complexity. Therefore the aim should  be  narrowing  the  OLEO  domain  to  a  controllable  extent.  Furthermore,  methods capable  of  implementation  as  web  service  should  be  defined  and  evaluated,  to  gain  their competence in the OLEO domain.And finally it should be stated, that an OLEO is a step towards a flexible flat organization, where each partner contributes according to his expertise. Thus, in case of a complex project, many  contributing  partners  can  combine  their  competences  in  order  to  accomplish  the common goal. However, the virtual coordination unit (VCU) should coordinate the project processes. In comparison to research and design departments there is no need to continually assemble an organized form. And tools enabling such virtual enterprises – virtual portals are becoming more and more sophisticated each day. Activities like interpreting and proofreading can already fully rely in virtual platforms. Importance and potential of such “virtual” organization has also been widely  recognized  in  several  European  FP6  projects,  e.g.  already  mentioned  VRL  KCiP, which recently transformed to Emiracle (Emiracle, 2010). The flexibility of an OLEO and its ability  to  use  resources  in  a  lean  manner  and  wisely  makes  it  feasible  also  in  sustainable product development and disposal.

Related Posts

Comments are closed.

© 2025 Mechanical Engineering - Theme by WPEnjoy · Powered by WordPress