Fabrication and processing of ceramics

Fabrication and processing of ceramics

Ceramic Synthesis Our  expertise  and  capabilities  in  synthesizing  ceramics  are  based  onchemical  solution techniques. Chemical solution or sol-gel approaches have beendeveloped to fabricate powders, films, and porous bodies. Materials of interest range from silica to complex, multicomponent electronic   ceramics.   The   complexity   inherent   in   fabricating   materials   with   structured nanoporosity or complex chemistries requires a fundamental understanding of these chemical solution approaches. Fabrication of unique precursors for complex oxides is being done with novel metal alkoxide chemistry to produce powders and thin-film materials with carefully controlled properties. Our ability to synthesize materials with complex structures, chemistries, or both, is at the heart of numerous research and development efforts at Sandia. Ceramic Processing Sandia's fabrication of ceramic components and devices is based on a strong ceramic-processing capability. We recently have demonstrated the ability to characterize and model the powder-…
Portland Cement

Portland Cement

Portland cement is a closely controlled chemical combination of calcium, silicon, aluminum, iron and small amounts of other compounds, to which gypsum is added in the final grinding process to regulate the setting time of the concrete. Some of the raw materials used to manufacture cement are limestone, shells, and chalk or marl, combined with shale, clay, slate or blast furnace slag, silica sand, and iron ore. Lime and silica make up approximately 85 percent of the mass The term "Portland" in Portland cement originated in 1824 when an English mason obtained a patent for his product, which he named Portland Cement. This was because his cement blend produced concrete that resembled the color of the natural limestone quarried on the Isle of Portland in the English Channel. Different types of Portland cement are manufactured to meet…
Types and applications of ceramics

Types and applications of ceramics

Ceramics offer a high temperature range. However, ceramics are not very strong. To compensate for their lack of strength ceramics are usually combined with some other material to form a ceramic composite. 1)  Glasses  and  glass  ceramics-  The  glasses  are a  familiar  group  of  ceramics;  containers, windows, lenses and fiberglass represent typical applications. The properties of standard vitrified products are insufficient for architectural applications and structural building components, insulation or other specialized applications. Yet there is an effective way to improve these properties without major alterations to the process itself - the introduction of a controlled crystallization process through a subsequent heat treatment, i.e. by forming a glass-ceramic. Production of Glass-Ceramics Glass-ceramic articles may be produced by three routes: β€’   The heat treatment of solid glass (the traditional route) β€’   The controlled cooling of a molten glass, known as the petrurgic method β€’   The sintering and crystallisation…
Ceramics (Applications and Processing)

Ceramics (Applications and Processing)

Ceramics encompass such a vast array of materials that a concise definition is almost impossible. However, one workable definition is: Ceramics can be defined as inorganic, nonmetallic materials. They are typically crystalline in nature and are compounds formed between metallic and nonmetallic elements such as aluminum and oxygen (alumina-Al2O3), calcium and oxygen (calcia - CaO), and silicon and nitrogen (silicon nitride-Si3N4). Ceramics is a refractory, inorganic, and nonmetallic material. Ceramics can be divided into two classes: traditional and advanced. Traditional ceramics include clay products, silicate glass and cement; while advanced ceramics consist of carbides (SiC), pure oxides (Al2O3), nitrides (Si3N4), non-silicate glasses and many others. Ceramics offer many advantages compared to other materials. They are harder and stiffer than steel; more heat and corrosion resistant than metals or polymers; less dense than most metals and their alloys; and their raw materials are both plentiful and inexpensive. Ceramic materials display a wide range of properties which facilitate their use in many different product areas. In general, most ceramics are: -  hard,…
Meissner Effect & Superconductor Types

Meissner Effect & Superconductor Types

The  Meissner  effect  is  an  expulsion  of  a  magnetic  field  from  a  superconductor  during  its transition to the superconducting state. T he German physicists Walther Meissner and Robert Ochsenfeld discovered the phenomenon in 1933 by measuring the magnetic field distribution outsidesuperconducting tin and lead samples. The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how thisbreakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a first order phase transition when the strength of the applied field rises above a critical value Hc. Type-II superconductor is characterized by the formation of magnetic vortices in an applied magnetic field. This occurs above a certain critical field strength Hc1. The vortex density increases with increasing field strength. At a higher critical field Hc2, superconductivity is completely destroyed.
Superconductivity

Superconductivity

Superconductivity  is  the  ability  of  certain  materials  to  conduct  electrical  current  with  no resistance and extremely low losses. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminum wires of the same size. Scientists had been intrigued with the concept of superconductivity since its discovery in the early 1900s, but the extreme low temperatures the phenomenon required was a barrier to practical and low-cost applications. This all changed in 1986, when a new class of ceramic superconductors was discovered that "superconducted" at higher temperatures. The science of high-temperature superconductivity (HTS) was born, and along with it came the prospect for an elegant technology that promises to "supercharge" the way energy is generated, delivered, and used.
Conduction in Ionic Materials

Conduction in Ionic Materials

In ionic materials, the band gap is too large for thermal electron promotion. Cation vacancies allow ionic motion in the direction of an applied electric field, this is referred to as ionic conduction. High temperatures produce more vacancies and higher ionic conductivity. At low temperatures,  electrical  conduction  in  insulators  is  usually  along  the  surface,  due  to  the deposition of moisture that contains impurity ions.
Semiconductor Devices

Semiconductor Devices

A  semiconductor  diode  is  made  by  the  intimate  junction  of  a  p-type  and  an  n-typesemiconductor (an n-p junction). Unlike a metal, the intensity of the electrical current that passes through the material depends on the polarity of the applied voltage. If the positive side of abattery is connected to the p-side, a situation called forward bias, a large amount of current can flow since holes and electrons are pushed into the junction region, where they recombine (annihilate). If the polarity of the voltage is flipped, the diode operates under reverse bias. Holes andelectrons are removed from the region of the junction, which therefore becomes depleted of carriers and behaves like an insulator. For this reason, the current is very small under reverse bias. The asymmetric current-voltage characteristics of diodes is used to convert alternating current into direct current. This is called rectification. A p-n-p junction transistor contains two diodes back-to-back. The central region is very thin and is called the base. A small voltage applied to the base has a large effect on the current passing through the transistor, and this can be used to amplify electrical signals (Fig. 19.22). Anothercommon device is the MOSFET transistor where a gate serves the function of the base in a junction transistor. Control of the current through the transistor is by means of the electric field induced by the gate, which is isolated electrically by an oxide layer.
Semiconductivity

Semiconductivity

Intrinsic Semiconductor Semiconductors can be intrinsic or extrinsic. Intrinsic means that electrical conductivity does not depend on impurities, thus intrinsic means pure. In extrinsic semiconductors the conductivity depends on the concentration of impurities. Conduction is by electrons and holes. In an electric field, electrons and holes move in opposite direction because they have opposite charges. In an intrinsic semiconductor, a hole is produced by the promotion of each electron to the conduction band. Thus: n = p Extrinsic…
Electrical Resistivity of Metals

Electrical Resistivity of Metals

The resistivity then depends on collisions. Quantum mechanics tells us that electrons behave like waves. One of the effects of this is that electrons do not scatter from a perfect lattice. They scatter by defects, which can be: - atoms displaced by lattice vibrations - vacancies and interstitials - dislocations, grain boundaries - impurities One can express the total resistivity Οtot by the Matthiessen rule, as a sum of resistivities due to thermal vibrations, impurities and dislocations. Fig. 19.8 illustrates how the resistivity increases with temperature, with deformation, and with alloying..