Normalizing

Normalizing

Is the process of raising the temperature to over 60 º C (108 ºF), above line A3 or line ACM fully into the Austenite range. It is held at this temperature to fully convert the structure into Austenite, and then removed form the furnace and cooled at room temperature under natural convection. This results in a grain structure of fine Pearlite with excess of Ferrite or Cementite. The resulting material is soft; the degree of softness depends on the actual ambient conditions of cooling. This process is considerably cheaper than full annealing since there is not the added cost of controlled furnace cooling.
Full annealing

Full annealing

Is the process of slowly raising the temperature about 50 ºC (90 ºF) above the Austenitic temperature line A3  or line ACM  in the case of Hypoeutectoid steels (steels with < 0.77%  Carbon)  and  50  ºC  (90  ºF)  into  the  Austenite-Cementite  region  in  the  case  of Hypereutectoid steels (steels with > 0.77% Carbon). It is held at this temperature for sufficient time for all the material to transform into Austenite or Austenite-Cementite as the case may be. It is then slowly cooled at the rate of about 20 ºC/hr (36 ºF/hr) in a furnace to about 50 ºC (90 ºF) into the Ferrite-Cementite range. At this point, it can be cooled in room temperature air with natural convection. The grain structure has coarse Pearlite with ferrite or Cementite (depending on whether hypo or hyper eutectoid). The steel becomes soft and ductile.
Cast Iron Uses

Cast Iron Uses

Cast iron is  used  in  a wide variety of structural  and  decorative applications,  because it  is relatively inexpensive, durable and easily cast into a variety of shapes.  Most of the typical uses include: - historic markers and plaques - hardware:  hinges, latches - columns, balusters - stairs…
Ductile cast iron

Ductile cast iron

A more recent development is nodular or ductile cast iron. Tiny amounts of magnesium or cerium added to these alloys slow down the growth of graphite precipitates by bonding to the edges of the graphite planes. Along with careful control of other elements and timing, this allows the carbon to separate as spheroidal particles as the material solidifies. The properties are similar to malleable iron, but parts can be cast with larger sections.
Malleable cast iron

Malleable cast iron

Malleable iron starts as a white iron casting that is then heat treated at about 900 °C (1,650 °F). Graphite separates out much more slowly in this case, so that surface tension has time to form it into  spheroidal  particles  rather  than  flakes.  Due  to  their  lower  aspect  ratio,  spheroids  are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack or phonon. They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems faced by grey cast iron. In general, the properties of malleable cast iron are more like mild steel. There is a limit to how large a part can be cast in malleable iron, since it is made from white cast iron.
White cast iron

White cast iron

It is the cast iron that displays white fractured surface due to the presence of cementite. With a lower silicon content (graphitizing agent) and faster cooling rate, the carbon in white cast iron precipitates out of the melt as the metastable phase cementite, Fe3C, rather than graphite. The cementite which precipitates from  the melt  forms as relatively large particles, usually in  a eutectic mixture,  where  the other  phase  is  austenite (which  on  cooling might  transform  to martensite). These eutectic carbides are much too large to provide precipitation hardening (as in some steels, where cementite precipitates might inhibit plastic deformation by impeding the movement of dislocations through the ferrite matrix). Rather, they increase the bulk hardness of the cast iron simply by virtue of their own very high hardness and their substantial volume fraction, such that the bulk hardness can be approximated by a rule of mixtures. In any case, they offer hardness at the expense of toughness. Since carbide makes up a large fraction of the material, white cast iron could reasonably be classified as a cermet. White iron is too brittle for use in many structural components, but with good hardness and abrasion resistance and relatively low cost, it finds use in such applications as the wear surfaces (impeller and volute) of…
Grey cast iron

Grey cast iron

Grey cast iron is characterised by its graphitic microstructure, which causes fractures of the material to have a grey appearance. It is the most commonly used cast iron and the most widely used cast material based on weight. Most cast irons have a chemical composition of 2.5–4.0% carbon, 1–3% silicon, and the remainder is iron. Grey cast iron has less tensile strength and shock resistance than steel, but its compressive strength is comparable to low and medium carbon steel.
Cast iron

Cast iron

Cast iron is iron or a ferrous alloy which has been heated until it liquefies, and is then poured into a mould to solidify. It is usually made from pig iron. The alloy constituents affect its colour when  fractured:  white cast  iron  has  carbide impurities  which  allow  cracks  to  pass  straight through. Grey cast iron has graphite flakes which deflect a passing crack and initiate countless new cracks as the material breaks. Carbon (C) and silicon (Si) are the main alloying elements, with the amount ranging from 2.1–4 wt% and 1–3 wt%, respectively. Iron alloys with less carbon content are known as steel. While this  technically makes  these  base  alloys  ternary  Fe–C–Si  alloys,  the  principle  of  cast  iron solidification is understood from the binary iron–carbon phase diagram. Since the compositions of most cast irons are around the eutectic point of the iron–carbon system, the melting temperatures closely correlate, usually ranging from 1,150 to 1,200 °C (2,100 to 2,190 °F), which is about 300 °C (572 °F) lower than the melting point of pure iron. Cast iron's properties are changed by adding various alloying elements, or alloyants. Next to carbon,…
Steel products can also be divided by their shapes and related applications

Steel products can also be divided by their shapes and related applications

•        Long/Tubular Products include bars and rods, rails, wires, angles, pipes, and shapes and sections. These products are commonly used in the automotive and construction sectors. •        Flat Products include plates, sheets, coils and strips. These materials are mainly used in automotive parts, appliances, packaging, shipbuilding, and construction. •        Other  Products  include  valves,  fittings,  and  flanges  and  are  mainly  used  as  piping materials.
Alloy steel

Alloy steel

Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low-alloy steels and high-alloy steels. The difference between the two is somewhat arbitrary: Smith and Has hemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%. Most commonly, the phrase "alloy steel" refers to low-alloy steels. Types: According to the World Steel Association, there are over 3,500 different grades of steel, encompassing unique physical, chemical and environmental properties. In essence, steel is composed of iron and carbon, although it is the amount of carbon, as well as the level of impurities and additional alloying elements that determines the properties of each steel grade. The carbon content in steel can range from 0.1-1.5%, but the most widely used grades of steel contain only 0.1-0.25% carbon. Elements such as manganese, phosphorus and sulphur are found in  all  grades  of  steel,  but,  whereas  manganese …