Dislocations and Strengthening Mechanisms

Dislocations and Strengthening Mechanisms

Basic Concept of dislocation Dislocations can be edge dislocations, screw dislocations and exist in combination of the two. Their motion (slip) occurs by sequential bond breaking and bond reforming . The number of dislocations per unit volume is the dislocation density, in a plane they are measured per unit area. Characteristics of Dislocations There is strain around a dislocation which influences how they interact with other dislocations, impurities, etc. There is compression near the extra plane (higher atomic density) and tension following the dislocation line. Dislocations interact among themselves. When they are in the same plane, they repel if they…
Stress and Temperature Effects

Stress and Temperature Effects

Both temperature and the level of the applied stress influence the creep characteristics. The results of creep rupture tests are most commonly presented as the logarithm of stress versus   the   logarithm   of   rupture   lifetime.   Creep   becomes   more   pronounced   at   higher temperatures. There is essentially no creep at temperatures below 40% of the melting point Creep increases at higher applied stresses. The behavior can be characterized by the following expression, where K, n and Qc are constants for a given material:                                        dε/dt = K σn exp(-Qc/RT)
Creep

Creep

Creep is the time-varying plastic deformation of a material stressed at high temperatures. Examples: turbine blades, steam generators. Keys are the time dependence of the strain and the high temperature. The Creep Curve Creep in metals is defined as time dependent plastic deformation at constant stress (or load) and temperature. The form of a typical creep curve of strain versus time is in Figure. The slope of this curve is the creep rate dε/dt. The curve may show the instantaneous elastic and plastic strain that occurs as the load is applied, followed by the plastic strain which occurs over time. Three stages to the creep curve may be identified:…
Crack Initiation and Propagation

Crack Initiation and Propagation

Stages is fatigue failure: I. crack initiation at high stress points (stress raisers) II. propagation (incremental in each cycle) III. final failure by fracture Stage I - propagation •   slow •   along crystallographic planes of high shear stress •   flat and featureless fatigue surface Stage II - propagation Crack…
Fatigue

Fatigue

Fatigue is the catastrophic failure due to dynamic (fluctuating) stresses. It can happen in bridges, airplanes, machine components, etc. The characteristics are: • long period of cyclic strain •   the most usual (90%) of metallic failures (happens also in ceramics and polymers) •   is brittle-like even in ductile metals, with little plastic deformation •   it occurs in stages involving the initiation andpropagation of cracks.…
Ductile brittle transition

Ductile brittle transition

Ductile  to  brittle  transition  occurs  in  materials  when  the  temperature  is  dropped  below  a transition temperature. Alloying usually increases the ductile-brittle transition temperature, for ceramics, this type of transition occurs at much higher temperatures than for metals. The notched-bar impact test can be used to determine whether or not a material experiences a ductile-to-brittle transition as the temperature is decreased. In such a transition, at higher temperatures the impact energy is relatively large since the fracture is ductile. As the temperature is lowered,the impact energy drops over a narrow temperature range as the fracture becomes more brittle. The transition can also be observed from the fracture surfaces, which appear fibrous or dull for totally ductile fracture, and granular and shiny for totally brittle fracture. Over the ductile-to-…
Impact Fracture

Impact Fracture

Impact fractures can best be described as a flute or strip of material that was cleanly sheared from a projectile point. The most common type of impact fracture starts at the tip of a point and runs down one blade edge possibly reaching the shoulder of a point. Some points were reworked into a useable point after having been damaged by an impact fracture. Normalized tests, like the Charpoy and Izod tests measure the impact energy required to fracture a notched specimen with a hammer mounted on a pendulum. The energy is measured by the change in potential energy (height) of the pendulum. This energy is called notch toughness.
Brittle Fracture

Brittle Fracture

There is no appreciable deformation, and crack propagation is very fast. In most brittle materials, crack propagation (by bond breaking) is along specific crystallographic planes (cleavage planes). This  type of fracture is  transgranular (through  grains) producing  grainy texture (orfaceted texture) when cleavage direction changes from grain to grain. In some materials, fracture is intergranular. Fracture occurs due to stress concentration at flaws, like surface scratches, voids,
Ductile Fracture

Ductile Fracture

Stages of ductile fracture 1. Initial necking 2. Small cavity formation (micro voids) 3. Void growth (ellipsoid) by coalescence into a crack 4.   Fast crack propagation around neck. Shear strain at 45o 5. Final shear fracture (cup and cone) The interior surface is fibrous, irregular, which…
Failure – Fundamentals of Fracture

Failure – Fundamentals of Fracture

Fracture is a form of failure where the material separates in pieces due to stress, at temperatures below the melting point. The fracture is termed ductile or brittle depending on whether the elongation is large or small. Steps in fracture (response to stress): • Crack formation • Crack propagation