Intelligent Technologies in Modelling and Control of Turbojet Engines

The state of present technologies in technical and also non-technical practice is represented by   growing   complexity   of   systems.   A   turbojet   engine   as   a   complex   system   is multidimensional highly parametric system with complex dynamics and strong non-linear behavior with stochastic properties. Its particular property is operation in a wide spectrum of  changes  of  its  operating  environment  (e.g.,  temperatures  from  -60  to  +40  °C,  different humidity, different pressures, etc.). If we want to secure optimal function of such system, it is  necessary  to  develop  models  and  control  systems  implementing  the  newest  knowledge from  the  areas  of  automation,  control  technologies  preferably  with  elements  of  artificial intelligence  (AI).  The  present  control  systems  and  dynamic  models  are  often  limited  to control  or  modeling  of  a  complex  system  in  its  certain  (operational)  states.  However,  in practice the turbojet engine finds itself in very different operating conditions that influence its parameters of operation and characteristics. To create progressive control algorithms for a  turbojet  engine,  it  is  necessary  to  design  models  in  the  whole  dynamic  spectrum  of  the modeled  system  including  its  erroneous  states.  Furthermore  we  need  to  design a  control system  that  will  secure  operation  converging  towards  optimality  in  all  eventual  states  of working environment and also inner states of the system represented by its parameters. This leads to the need of having increased intelligence of control of turbojet engines that reduces workload of a pilot and also increases safety of operation. Safety represents a decisive factor in  design  of  control  systems  of  turbojet  engines  and  is  presently  bound  with  increasing authority  of them.   The  present  trend  designates  such  control  systems  as  FADEC  –  Full Authority  Digital  Engine  Control,  however  in  reality  such  control  systems  have  different levels of authority, intelligence and come in very different implementations. These are often not presented as they are intellectual properties of commercial companies. The article will be aimed on description of some present trends in development of FADEC systems and own proposals  of  methodologies  leading  towards  design  and  implementation  of  a  FADEC system  with  high  level  of  intelligence  able  to  solve  all  operational  situations  of  a  turbojet engine. This is strictly bound with presentation of modern methods of modeling of turbojet engines and the use of advanced methods of mainly sub-symbolic artificial intelligence. The proposed  methods  are  all  tested  in  real-world  environment  using  a  small  turbojet  engine MPM-20  in  our  laboratory  setup.  Therefore  the  article  will  also  deal  with approaches  in digital  real-time  measurement  of  state  parameters  of  this  engine  and  design  of  control algorithms from engineering standpoint.

Modern control systems of turbojet engines

The main global aim of control of turbojet engines is similar to other systems and that lies in increasing  their  safety  and  effectiveness  by  possible  reduction  of  costs.  This  requires application  of  new  technologies,  materials  and  new  conceptual  solutions.  One  mean  to achieve  that  is  the  development  in  systems  of  control  and  regulation  of  the  engines themselves and processes ongoing in them.

Demands  for  control  and  regulation  systems  result  mainly  from  specific  properties  of  the object  of  control  –  a  turbojet  engine.  The  basic  functions  of  control  systems  of  a  turbojet engine  are  the  following  ones  –  manual  control,  regulation  of  its  parameters  and  their limitation.  Manual  control  and  therefore  choice  of  regime  of  the  engine  is  realized  by  a throttle  lever  according  to  a  flight  situation  or  expected  maneuver.  By  regulation  of  a turbojet engine we understand such a kind of control where the chosen parameters of the engine are maintained on certain set levels, thus keeping its regime.In the past, the classical control systems of turbojet engines were implemented mainly by hydro-mechanical  elements,  which  however  suffered  from  deficiencies  characteristic  for such systems. Among such deficiencies were, high mass of such systems, inaccuracies due to  mechanical  looses  and  low  count  of  regulated  parameters.  However  development  of electronic systems and their elements is ongoing, which will allow to increase precision of regulation  of  parameters  of  turbojet  engines  and  their  count  to  secure  more  complex  and precise control of turbojets.

Use  of  electronics  and  digital  technologies  in  control  systems  of  turbojet  engines  has brought: (Lazar, 2000):

•      lowering of mass of control system

•    higher complexity of control – The count of regulated parameters used to be 3 to 7 by hydro-mechanical   systems,   however   the   digital   systems   operate   with   12   to   16

parameters;

•    increasing   of   static   precision   of   regulation   of   different   parameters   (for   example, precision of rotations from ±0.5 % to ±0.1 %, precision of regulation of temperature from

±12K to ±5K

•    increase in reliability, service life and economics of operation of the driving unit of an aircraft;

•      easier backup, technology of use and repairs, possibility of use of automatic diagnostics. By design of solution of a control system for a turbojet engine, it is necessary to build anappropriate mathematical model of the engine. The ideal approach to design of electronic systems  is  a  modular  one,  from  hardware  or  software  point  of  view.  This  implies  use  of qualitative processing units that are resistant to noises of environment and also realization of bus systems with low delays is very important in this approach. Further improvement in quality of control can be achieved by implementation of progressive algorithms of control, diagnostics and planning in electronic systems. These algorithms have to be able to asses the state  of  the  controlled  system  (turbojet  engine  in  our  case),  then  parameterize  action elements  and  they  have  to  be  able  to  control  the  engine  under  erroneous  conditions represented in outer environment or as errors in subsystems of the engine itself. Prediction of  such  states  represents  an  area  to  incorporate  predictive  control  system.  Methods  of situational control bound with elements of artificial intelligence supply many robust tools for solution of afore mentioned problems and sub-problems.

From  the  point  of  view  of  use  of  electrical  and  electronic  systems  in  controls  the  turbojet control systems can be roughly hierarchically divided into following sets (Lazar, 2000):

1.     Electronic limiters,

2.     Partial Authority Flight Control Augmentation (PAFCA,

3.   „High  Integration  Digital  Electronic  Control“  (HIDEC);  „Digital  Engine  Control“  – (DEC); „Full Authority Digital Engine Control“ – (FADEC)). The division of control systems into these three levels is not absolutely distinct, as systems

on higher level as for example HIDEC system can utilize control mechanisms as electronic limiters.  For  example  FADEC  systems  are  often  realized  as  single  or  double  loop  control systems with utilization of PI control algorithms or electronic limiters with estimation filters (Jonathan,  2005;  Sanjay,  2005).  Example  of  such  FADEC  algorithm  is  shown  in  figure  1 (Jonathan, 2005).

Full authority control systems

There are of course many possibilities and methodologies applicable to control systems of turbojet  engines,  which  are  FADEC  compliant.  Such  application  has  to  cope  with  strong non-linearity and changing structure of models and constants during operation of a turbojet engine.  Such  intelligent  system  should  also  be  able  to  form  decisions  and  predict  faults either in control circuit or the object of turbojet engine itself. Therefore intelligent turbojet engine control is often bound with design of intelligent diagnostics systems (Wiseman, 2005) that also deal with control of an engine during its long-term deterioration. Example of such control based on diagnostics modules is shown in figure

The   control   system   in   this   case   is   based   on   intelligent   PHM   (Prognostics   Health Management) of the engine. Diagnostic systems of turbojet engines can be further realized by means of artificial intelligence. In design of diagnostic and control system which would control the engine in its erroneous states and act long before actual critical states develops itself;  we  need  to  form  exact  dynamic  models  of  the  engine.  In  design  of  classic  control systems  only  first  to  second  order  linear  models  are  commonly  used.  Methods  of  AI however  offer  possibilities  of  modeling  the  dynamic  parameters  of  an  engine  in  multi variable space with great precision in the whole range of operation of engine. Such models can have precision within 2% of standard error in whole area of operation of a jet engine (Andoga, 2006). Integrated model used for control of a turbojet engine can be seen in figure

1.  Importance of modeling during operation of a turbojet engine can be further extended to fault detection of sensors and other parts of control system and the engine itself. In design of control system, the architecture also plays a significant role. Two common architectures can be presently found in design of turbojet engine FADEC control systems (Sanjay, 2007). The first one is the centralized one, which is reliable and well understood, but on the other hand has  many  drawbacks  like  inflexibility,  high  weight,  complicated  fault  detection,  etc.  This architecture is shown in the figure 3. The  other  usable  architecture  for  design  is  the distributed  architecture  (fig.  4).  Its  main advantage is high flexibility, easier fault detection and isolation, its cons are mainly higher complexity,  communication  unknowns  and  deterministic  behavior  and  it  requires  new technologies, i.e. high temperature electronics for use in turbojet engines. The basic element of the FADEC control system is the electronic engine control (EEC) unit that represents the main computer (outlined in black, in the previous figures). Such systems that   are   presently   used   to   control   common   commercial   airliners’   engines   can   be schematically depicted in the following figure 4 (Linke-Diesenger, 2008).

Small turbojet engine – MPM 20

The  experimental  engine  MPM  20  has  been  derived  from  the  TS  –  20  engine,  which  is  a turbo-starter turbo-shaft engine previously used for starting engines AL-7F and AL-21F. The engine  has  been  rebuilt  to  a  state,  where  it  represents  a  single  stream  engine  with  radial compressor  and  a  single  stage  non-cooled  turbine  and  outlet  jet.  The  basic  scheme  of  the engine is shown in the figure 5

All  sensors,  except  fuel  flow  and  rotations  sensor,  are  in  fact  analogue  and  have  voltage output.  This  is  then  digitalized  by  a  SCXI  measurement  system  and  corresponding  A/D converters  and  sent  through  a  bus  into  computer.  Every  parameter  is  measured  at  the sampling rate of 10 Hz. The data acquisition has been done in LabView environment. The digital measurement of parameters of MPM-20 engine in real time is important to create a model  and  control  systems  complying  with  FADEC  definition  („Full  Authority  Digital Electronic  Engine  Control“).  Moreover  we  needed  to  change  the  engine  from  static  single regime engine into a dynamic object, what was done by regulation of pressure beyond the compressor according to which the current fuel supply actuator changes actual fuel supply for the engine in real time. The system has been described in (Andoga, 2006). The graph in figure  6  shows  dynamic  changes  of  parameters  of  the  engine  to  changes  of  fuel  supply input.

Modeling of turbojet engines

Basic approaches in modeling of turbojet engines

In  order  to  design  and  develop  a  control  system  for  a  turbojet  engine,  its  mathematical model   has   to   be   constructed.   In   mathematical   modeling   of   technical   systems,   many approaches can be used for different purposes. Specifically in the area  of turbojet engines modeling two basic can be used. The first one is the analytic one that is usually developed under  equilibrium  conditions  and  uses  physical  relations  and  formulas  to  model  usually static   characteristics   of   different  areas   of   an   engine   like   inlet   system,   compressor, combustion chamber, etc. Such model is mainly used in design of the engine itself and to estimate basic operating parameters and envelopes in different environments. Basic control laws can be also estimated from such model. The second approach used mainly in design of control algorithms and diagnostic systems lies in creation of dynamic experimental models that  model  the  engine  or  its  parts  as  black  boxes  as  transfer  functions  between  input  and output parameters (Harris, et. al, 2006). These models are aimed on simulation of dynamic behavior and regimes of an engine. To create a complex and intelligent control system both approaches have to be used and the further sections of this chapter will show some of these approaches  to  create  precise  computational  models  with  use  of  elements  of  artificial intelligence. The authors of the paper deal with both approaches in modeling and as a real- world object a small turbojet engine MPM-20 is used.

Analytic modeling

Static  and  dynamic  properties  of  turbojet  engines  (MPM-20)  can  also  be  described  by  a mathematical   model   of   operation   single   stream   engine   under   equilibrium   or   non- equilibrium  conditions.  This  will  allow  modeling  the  thrust,  fuel  consumption,  pressures and temperatures of the engine by different altitudes and velocities in the chosen cuts of the engine.

The steady operation of the engine is such a regime, where in every element of the engine same thermodynamic processes are realized. Operation of an engine in its steady operation can be described by:

1.   algebraic equations of balance of mass flow of working materials through nodes of the engine,  equations  of  output  balance,  equations  of  regulation  rules  and  equations describing  particular  oddities  of  an  engine.  A  system  of  equations  expresses  that  for given  outer  conditions  of  operation  of  an  engine,  characteristics  of  all  nodes  of  an engines and preset values of control parameters (fuel supply, cross section of the output nozzle, angle of compressor blades), operation of the engine will settle itself on one and only one regime (Ružek, Kmoch, 1979) .

2.   graphically   by   utilization   of   knowledge   of   characteristics   of   all   parts   (output, compressor, turbine, etc) of the engine and their preset curves of joint operations (e.g. lines of stable rations of T3c/T1c in compressor). Designation of all curves of the engine is  done  in  a  way  that  we  will  try  to  fulfill  continuity  conditions  for  all  parts  of  the engine and characteristics of all these parts are given. These characteristics can be found by direct measurement, computation, etc.

Any  regime  of  the  turbojet  engine  has  to  fulfill  the  continuity  equation  which  designates dependencies  between  mass  flow  of  air  through  the  compressor,  turbine,  combustion chamber and exhaust system (Považan, 1999):

Situational control system design for a turbojet engine

Methods of artificial intelligence may offer new quality into control systems. However they can  bring  such  benefits  only  after  a  careful  model  based  analysis  of  a  system  where  they should be applied with regards to simplicity and error free operation of such control system. Because  on  the  lowest  level  of  control  we  deal  mostly  with  data  and  raw  numbers,  the approaches of sub-symbolic AI are appropriate to be used in design of intelligent FADEC control systems. However, on higher level of integration some symbolic concepts could also be used. From the area of symbolic AI three basic approaches can be successfully used:

•      neural networks,

•      fuzzy inference systems,

 •      genetic algorithms

Start-up controller design for the MPM-20 engine

In design of control algorithms as elements of an integrated control circuit fuzzy inference systems can be successfully used. Such system has been used to design a startup controller for  MPM  20  –  the  experimental  small  turbojet  engine.  This  controller  is  acting  only  by startup of the engine and its aim is to decrease the temperature overshoot by startup that decreases life cycle of the engine and in certain cases can lead to turbine engine damage. The present  startup  techniques  are  mainly  time  based,  what  means  that  the  fuel  flow  input  is increased in a time based function rather than parameter based. The control algorithm can be seen as controller S1  in the figure 18 and is bound with digitally controlled servo vent for fuel supply control.The  basic  idea  is  to  decompose  the  startup  process  of  the  engine  into  model  micro- situational frames, where one rule of the inference system would correspond to one micro- situational frame in the start-up macro-situational frame. Each rule in the form of <IF>   <THEN>   postulate has a corresponding output value of fuel supply assigned. In this way we can handle not only the classical situations at startup, but  also  emergency  situations  like  flameout  of  the  engine  or  fire  in  the  engine  at  startup. Three inputs and one output were chosen for the rules so the rule looks like this:

Conclusion

The article presented some basic approaches in modeling and control of turbojet engines in general and applied for the object of the MPM-20 engine. This engine gives us an ideal test bed  for  research  of  methods  in  the  areas  of  non-linear  dynamic  systems  modeling  and design  of  advanced  control  algorithms.  Further  research  will  be  done  in  the  area  of situational  modeling  that  will  be  headed  towards  broadening  of  input  parameters  of  the situational  model  of  the  engine  and  further  refinement  situational  classes.  In  this  area  we will be aimed at use of automatic algorithms to find boundaries between situational frames within  multivariate  space  of  parameters  contrary  to  their  setting  by  an  expert.  This  also applies  for  situational  control  algorithm  with  the  main  aim  lying  in  research  of  adaptive situational  classifier  systems  that  will  be  able  to  create  classes  and  automatically  assign controllers  for  them.  All  research  in  the  areas  of  situational  modeling,  situational  control should  bring  new  quality  of control  and  modeling  in  the area  of  turbojet  engines  and we expect this knowledge to be also expanded to other areas of technical systems.

The article presented some basic approaches in modeling and control of turbojet engines in general and applied for the object of the MPM-20 engine. This engine gives us an ideal test bed  for  research  of  methods  in  the  areas  of  non-linear  dynamic  systems  modeling  and design  of  advanced  control  algorithms.  Further  research  will  be  done  in  the  area  of situational  modeling  that  will  be  headed  towards  broadening  of  input  parameters  of  the situational  model  of  the  engine  and  further  refinement  situational  classes.  In  this  area  we will be aimed at use of automatic algorithms to find boundaries between situational frames within  multivariate  space  of  parameters  contrary  to  their  setting  by  an  expert.  This  also applies  for  situational  control  algorithm  with  the  main  aim  lying  in  research  of  adaptive situational  classifier  systems  that  will  be  able  to  create  classes  and  automatically  assign controllers  for  them.  All  research  in  the  areas  of  situational  modeling,  situational  control should  bring  new  quality  of control  and  modeling  in  the area  of  turbojet  engines  and we expect this knowledge to be also expanded to other areas of technical systems.

Related Posts

Comments are closed.

© 2025 Mechanical Engineering - Theme by WPEnjoy · Powered by WordPress