Ductile brittle transition

Ductile  to  brittle  transition  occurs  in  materials  when  the  temperature  is  dropped  below  a transition temperature. Alloying usually increases the ductile-brittle transition temperature, for ceramics, this type of transition occurs at much higher temperatures than for metals. The notched-bar impact test can be used to determine whether or not a material experiences a ductile-to-brittle transition as the temperature is decreased. In such a transition, at higher temperatures the impact energy is relatively large since the fracture is ductile. As the temperature is lowered,the impact energy drops over a narrow temperature range as the fracture becomes more brittle. The transition can also be observed from the fracture surfaces, which appear fibrous or dull for totally ductile fracture, and granular and shiny for totally brittle fracture. Over the ductile-to- brittle transition features of both types will exist. While for pure materials the transition may occur very suddenly at a particular temperature, for many materials the transition occurs over a range of temperatures. This causes difficulties when trying to define a single transition temperature and no specific criterion has been established. The ductile-brittle transition is exhibited in bcc metals, such as low carbon steel, which become brittle at low temperature or at very high strain rates. Fcc metals, however, generally remain ductile at low temperatures.

Read More

Impact Fracture

Impact fractures can best be described as a flute or strip of material that was cleanly sheared from a projectile point. The most common type of impact fracture starts at the tip of a point and runs down one blade edge possibly reaching the shoulder of a point. Some points were reworked into a useable point after having been damaged by an impact fracture. Normalized tests, like the Charpoy and Izod tests measure the impact energy required to fracture a notched specimen with a hammer mounted on a pendulum. The energy is measured by the change in potential energy (height) of the pendulum. This energy is called notch toughness.

Read More

Brittle Fracture

There is no appreciable deformation, and crack propagation is very fast. In most brittle materials, crack propagation (by bond breaking) is along specific crystallographic planes (cleavage planes). This  type of fracture is  transgranular (through  grains) producing  grainy texture (orfaceted texture) when cleavage direction changes from grain to grain. In some materials, fracture is intergranular. Fracture occurs due to stress concentration at flaws, like surface scratches, voids,

Read More

Ductile Fracture

Stages of ductile fracture 1. Initial necking 2. Small cavity formation (micro voids) 3. Void growth (ellipsoid) by coalescence into a crack 4.   Fast crack propagation around neck. Shear strain at 45o 5. Final shear fracture (cup and cone) The interior surface is fibrous, irregular, which signify plastic deformation.

Read More

The Durometer

The Durometer is a popular instrument for measuring the indentation hardness of rubber and rubber-like materials. The most popular testers are the Model A used for measuring softer materials and the Model D for harder materials.The operation of the tester is quite simple. The material is subjected to a definite pressure applied by a calibrated spring to an indenter that is either a cone or sphere and an indicating device measures the depth of indentation.

Read More

The Scleroscope Hardness Test

The Scleroscope test consists of dropping a diamond tipped hammer, which falls inside a glass tube under the force of its own weight from a fixed height, onto the test specimen. The height of the rebound travel of the hammer is measured on a graduated scale. The scale of the rebound is arbitrarily chosen  and  consists  on  Shore units, divided  into  100  parts,  which  represent  the average rebound from pure hardened high-carbon steel. The scale is continued higher than 100 to include metals having greater hardness. In normal use the shore scleroscope test does not mark the material under test. The Shore Scleroscope measures hardness in terms of the elasticity of the material and the hardness number depends on the height to which the hammer rebounds, the harder the material, the higher the rebound. Advantages of this method are portability and non- marking of the test surface.

Read More

Micro-hardness Test

Knoop Hardness Test The term microhardness test usually refers to static indentations made with loads not exceeding 1 kgf. The indenter is either the Vickers diamond pyramid or the Knoop elongated diamond pyramid. The procedure for testing is very similar to that of the standard Vickers hardness test, except that it is done on a microscopic scale with higher precision instruments. The surface being tested generally requires a metallographic finish; the smaller the load used, the higher the surface finish required. Precision microscopes are used to measure the indentations; these usually have a magnification of around X500 and measure to an accuracy of +0.5 micrometres. Also with the same observer differences of +0.2 micrometres can usually be resolved. It should, however, be added that considerable care and experience are necessary to obtain this accuracy. The Knoop hardness number KHN is the ratio of the load applied to the indenter, P (kgf) to the unrecovered projected area A (mm2) KHN = F/A = P/CL2 Where: F = applied load in kgf A = the unrecovered projected area of the indentation in mm2 L = measured length of long diagonal of indentation in mm C = 0.07028 = Constant of indenter relating projected area of the indentation to the square of the length of the long diagonal.

Read More

Vickers Hardness Test

The Vickers hardness test method consists of indenting the test material with a diamond indenter, in the form of a right pyramid with a square base and an angle of 136 degrees between opposite faces subjected to a load of 1 to 100 kgf. The full load is normally applied for 10 to 15 seconds. The two diagonals of the indentation left in the surface of the material after removal of the load are measured using a microscope and their average calculated. The area of the sloping surface of the indentation is calculated. The Vickers hardness is the quotient obtained by dividing the kgf load by the square mm area of indentation. When the mean diagonal of the indentation has been determined the Vickers hardness may be calculated from the formula, but is more convenient to use conversion tables. The Vickers hardness should be reported like 800 HV/10, which means a Vickers hardness of 800, was obtained  using  a  10  kgf  force.  Several  different  loading  settings  give  practically  identical hardness numbers on uniform material, which is much better than the arbitrary changing of scale with the other hardness testing methods. The advantages of the Vickers hardness test are that extremely accurate readings can be taken, and just one type of indenter is used for all types of metals and surface treatments. Although thoroughly adaptable and very precise for testing the softest and hardest of materials, under varying loads, the Vickers machine is a floor standing unit that is moreexpensive than the Brinell or Rockwell machines. F  = Load in kgf D =Arithmetic mean of the two diagonals, d1 and d2 in mm HV = Vickers hardness

Read More

Rockwell Hardness Test

The Rockwell hardness test method consists of indenting the test material with a diamond cone or hardened steel ball indenter. The indenter is forced into the test material under a preliminary minor load F0 (Fig. 1A) usually 10 kgf. When equilibrium has been reached, an indicating device, which follows the movements of the indenter and so responds to changes in depth of penetration of the indenter is set to a datum position. While the preliminary minor load is still applied an additional major load is applied with resulting increase in penetration (Fig. 1B). When equilibrium has again been reach, the additional major load is removed but the preliminary minor load is still maintained. Removal of the additional major load allows a partial recovery, so reducing the depth of penetration. The permanent increase in depth of penetration, resulting from the application and removal of the additional major load is used to calculate the Rockwell hardness number.  Advantages of the Rockwell hardness method include the direct Rockwell hardness number readout and rapid testing time.

Read More