Copper - Copper is one of the earliest metals discovered by man. - The boilers on early steamboats were made from copper. - The copper tubing used in water plumbing in Pyramids was found in serviceable condition after more than 5,000 years. - Cu is a ductile metal. Pure Cu is soft and malleable, difficult to machine. - Very high electrical conductivity – second only to silver.…
As stated above, there is a barrier to diffusion created by neighboring atoms that need to move to let the diffusing atom pass. Thus, atomic vibrations created by temperature assist diffusion. Also, smaller atoms diffuse more readily than big ones, and diffusion is faster in open lattices or in open directions. Similar to the case of vacancy formation, the effect of temperature in diffusion is given by a Boltzmann factor: D = D0 × exp(–Qd/kT).
This is the case when the diffusion flux depends on time, which means that a type of atoms accumulates in a region or that it is depleted from a region (which may cause them to accumulate in another region).
The flux of diffusing atoms, J, is expressed either in number of atoms per unit area and per unit time (e.g., atoms/m2-second) or in terms of mass flux (e.g., kg/m2-second).Steady state diffusion means that J does not depend on time. In this case, Fick’s first law holds that the flux along direction x is: J = – D dC/dx Where dC/dx is the gradient of the concentration C, and D is the diffusion constant. The concentration gradient is often called the driving force in diffusion (but it is not a force in the mechanistic sense). The minus sign in the equation means that diffusion is down the concentration gradient.
Diffusion Mechanisms Diffusion is the process of mass flow in which atoms change their positions relative to neighbors in a given phase under the influence of thermal and a gradient. The gradient can be a compositional gradient, an electric or magnetic gradient, or stress gradient. Many reactions in solids and liquids are diffusion dependent. Diffusion is very important in many industrial and domestic applications. E.g.: Carburizing the steel, annealing homogenization after solidification, coffee mixing, etc. From an atomic perceptive, diffusion is a step wise migration of atoms from one lattice position to another. Migration of atoms in metals/alloys can occur in many ways, and thus corresponding diffusion mechanism is defined. Atom diffusion can occur by the motion of vacancies (vacancy diffusion) or impurities (impurity diffusion). The energy barrier is that due to nearby atoms which need to move to let the atoms go by. This is more easily achieved when the atoms vibrate strongly, that is, at high temperatures.…
This case-hardening method produces the hardest surface of any of the hardening processes. It differs from the other methods in that the individual parts have been heat-treated and tempered before nitriding. The parts are then heated in a furnace that has an ammonia gas atmosphere. No quenching is required so there is no worry about warping or other types of distortion. This process is used to case harden items, such as gears, cylinder sleeves, camshafts and other engine parts, that need to be wear resistant and operate in high-heat areas.
This process is a type of case hardening that is fast and efficient. Preheated steel is dipped into a heated cyanide bath and allowed to soak. Upon removal, it is quenched and then rinsed to remove any residual cyanide. This process produces a thin, hard shell that is harder than the one produced by carburizing and can be completed in 20 to 30 minutes vice several hours. The major drawback is that cyanide salts are a deadly poison.
Carburizing is a case-harden- ing process by which carbon is added to the surface of low-carbon steel. This results in a carburized steel that has a high-carbon surface and a low-carbon interior. When the carburized steel is heat-treated, the case be- comes hardened and the core remains soft and tough. Two methods are used for carburizing steel. One method consists of heating the steel in a furnace containing a carbon monoxide atmosphere. The other method has the steel placed in a container packed with charcoal or some other carbon-rich material and then heated in a furnace. To cool the parts, you can leave the container in the furnace to cool or remove it and let it air cool. In both cases, the parts become annealed during the slow cooling. The depth of the carbon penetration depends on the length of the soaking period. With to- day’s methods, carburizing is almost exclusively done by gas atmospheres.
Case hardening produces a hard, wear-resistant sur- face or case over a strong, tough core. The principal forms of casehardening are carburizing, cyaniding, and nitriding. Only ferrous metals are case-hardened. Case hardening is ideal for parts that require a wear-resistant surface and must be tough enough interally to withstand heavy loading. The steels best suited for case hardening are the low-carbon and low-alloy series. When high-carbon steels are case hardened, the hardness penetrates the core and causes brittleness. In case hardening, you change the surface of the metal chemically by introducing a high carbide or nitride content. The core remains chemically unaffected. When heat-treated, the high-carbon surface responds to hardening, and the core toughens.
Hardening can be enhanced by extremely small precipitates that hinder dislocation motion. The precipitates form when the solubility limit is exceeded. Precipitation hardening is also called age hardening because it involves the hardening of the material over a prolonged time.